Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Z Med Phys ; 34(1): 31-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030484

RESUMO

The International Partner Agencies of the International Space Station (ISS) present a comparison of the ionizing radiation absorbed dose and risk quantities used to characterize example missions in lunar space. This effort builds on previous collaborative work that characterizes radiation environments in space to support radiation protection for human spaceflight on ISS in low-Earth orbit (LEO) and exploration missions beyond (BLEO). A "shielded" ubiquitous galactic cosmic radiation (GCR) environment combined with--and separate from--the transient challenge of a solar particle event (SPE) was modelled for a simulated 30-day mission period. Simple geometries of relatively thin and uniform shields were chosen to represent the space vehicle and other available shielding, and male or female phantoms were used to represent the body's self-shielding. Absorbed dose in organs and tissues and the effective dose were calculated for males and females. Risk parameters for cancer and other outcomes are presented for selected organs. The results of this intracomparison between ISS Partner Agencies itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report.


Assuntos
Radiação Cósmica , Voo Espacial , Feminino , Humanos , Masculino , Doses de Radiação , Radiometria , Astronave
3.
Z Med Phys ; 34(1): 14-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37507310

RESUMO

The Partner Agencies of the International Space Station (ISS) maintain separate career exposure limits and shared Flight Rules that control the ionising radiation exposures that crewmembers can experience due to ambient environments throughout their space missions. In low Earth orbit as well as further out in space, energetic ions referred to as galactic cosmic radiation (GCR) easily penetrate spacecraft and spacecraft contents and consequently are always present at low dose rates. Protons and electrons that are trapped in the Earth's geomagnetic field are encountered intermittently, and a rare energetic solar particle event (SPE) may expose crew to (mostly) energetic protons. Space radiation protection goals are to optimize radiation exposures to maintain deleterious late effects at known and acceptable levels and to prevent any early effects that might compromise crew health and mission success. The conventional radiation protection metric effective dose provides a basic framework for limiting exposures associated with human spaceflight and can be communicated to all stakeholders. Additional metrics and uncertainty analyses are required to understand more completely and to convey nuanced information about potential impacts to an individual astronaut or to a space mission. Missions to remote destinations well beyond low Earth orbit (BLEO) are upcoming and bestow additional challenges that shape design and radiation protection needs. NASA has recently adopted a more permissive career exposure limit based upon effective dose and new restrictions on mission exposures imposed by nuclear technologies. This manuscript reviews the exposure limits that apply to the ISS crewmembers. This work was performed in collaboration with the advisory and guidance efforts of International Commission on Radiological Protection (ICRP) Task Group 115 and will be summarized in an upcoming ICRP Report.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Humanos , Doses de Radiação , Prótons , Radiação Cósmica/efeitos adversos , Medição de Risco
4.
Life Sci Space Res (Amst) ; 39: 106-118, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945083

RESUMO

The dosimeter Liulin-MO for measuring the radiation environment onboard the ExoMars Trace Gas Orbiter (TGO) is a module of the Fine Resolution Epithermal Neutron Detector (FREND). Here we present results from measurements of the charged particle fluxes, dose rates and estimation of dose equivalent rates at ExoMars TGO Mars science orbit, provided by Liulin-MO from May 2018 to June 2022. The period of measurements covers the declining and minimum phases of the solar activity in 24th solar cycle and the rising phase of the 25th cycle. Compared are the radiation values of the galactic cosmic rays (GCR) obtained during the different phases of the solar activity. The highest values of the dose rate and flux from GCR are registered from March to August 2020. At the minimum of 24th and transition to 25th solar cycle the dose rate from GCR is 15.9 ± 1.6 µGy h-1, particle flux is 3.3 ± 0.17 cm-2s-1, dose equivalent rate is 72.3 ± 14.4 µSv h-1. Since September 2020 the dose rate and flux of GCR decrease. Particular attention is drawn to the observation of the solar energetic particle (SEP) events in July, September and October 2021, February and March 2022 as well as their effects on the radiation environment on TGO during the corresponding periods. The SEP event during15-19 February 2022 is the most powerful event observed in our data. The SEP dose during this event is 13.8 ± 1.4 mGy (in Si), the SEP dose equivalent is 21.9 ± 4.4 mSv. SEP events recorded in Mars orbit are related to coronal mass ejections (CME) observed by SOHO and STEREO A coronagraphs. Compared are the time profiles of the count rates measured by Liulin-MO, the neutron detectors of FREND and neutron detectors of the High Energy Neutron Detector (HEND) aboard Mars Odyssey during 15-19 February 2022 event. The data obtained is important for the knowledge of the radiation environment around Mars, regarding future manned and robotic flights to the planet. The data for SEP events in Mars orbit during July 2021-March 2022 contribute to the details on the solar activity at a time when Mars is on the opposite side of the Sun from Earth.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Atividade Solar , Órbita , Monitoramento de Radiação/métodos
5.
Life Sci Space Res (Amst) ; 39: 119-130, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945084

RESUMO

The knowledge of the space radiation environment in spacecraft transition and in Mars vicinity is of importance for the preparation of the human exploration of Mars. ExoMars Trace Gas Orbiter (TGO) was launched on March 14, 2016 and was inserted into circular Mars science orbit (MSO) with a 400 km altitude in March 2018. The Liulin-MO dosimeter is a module of the Fine Resolution Epithermal Neutron Detector (FREND) aboard ExoMars TGO and has been measuring the radiation environment during the TGO interplanetary travel to Mars and continues to do so in the TGO MSO. One of the scientific objectives of the Liulin-MO investigations is to provide data for verification and benchmarking of the Mars radiation environment models. In this work we present results of comparisons of the flux measured by the Liulin-MO in TGO Mars orbit with calculated estimations. Described is the methodology for estimation the particle flux in Liulin-MO detectors in MSO, which includes modeling the albedo spectra and procedure for calculation the fluxes, recorded by Liulin-MO on the basis of the detectors shielding model. The galactic cosmic rays (GCR) and Mars albedo radiation contribution to the detectors count rate was taken into account. The GCR particle flux was calculated using the Badhwar O'Neil 2014 model for December 1, 2018. Detailed calculations of the albedo spectra of protons, helium ions, neutrons and gamma rays at 70 km height, performed with Atmospheric Radiation Interaction Simulator (AtRIS), were used for deriving the albedo radiation fluxes at the TGO altitude. In particular, the sensitivity of the Liulin-MO semiconductor detectors to neutron and gamma radiation has been considered in order to calculate the contribution of the neutral particles to the detected flux. The results from the calculations suggest that the contribution of albedo radiation can be about 5% of the measured total flux from GCR and albedo at the TGO altitude. The critical effect of TGO orientation, causing different shading of the GCR flux by Mars, is also analysed in detail. The comparison between the measurements and estimations shows that the measured fluxes exceed the calculated values by at least 20% and that the effect of TGO orientation change is approximately the same for the calculated and measured fluxes. Accounting for the ACR contribution, secondary radiation and the gradient of GCR spectrum from 1 AU to 1.5 AU, the calculated flux may increase to match the measurement results. The results can serve for the benchmarking of GCRs models at Martian orbit.


Assuntos
Marte , Monitoramento de Radiação , Humanos , Dosímetros de Radiação , Meio Ambiente Extraterreno , Órbita , Monitoramento de Radiação/métodos
6.
Life Sci Space Res (Amst) ; 39: 3-13, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945087

RESUMO

The Radiation monitoring system (RMS) continuously operated in various configurations since the launch of the Zvezda module of the International Space Station (ISS). The RMS consisted of 7 units, namely: the R-16 dosimeter, 4 DB-8 dosimeters, utility and data collection units. The obtained data covers a time of 22 years. This paper analyses the radiation environment variations on board the "Zvezda" module. Variations of the onboard daily dose rate associated with changes of ISS altitude and 11-year cycle galactic cosmic rays' variations are analyzed and discussed. It is shown that the observed increase in the daily dose from 0.20 - 0.25 to 0.35 - 0.50 mGy/day is mostly due to the increase of ISS orbit altitude, resulting in a substantial increase of the dose contribution from the South Atlantic Anomaly (SAA) Region. Dose rate variations in the SAA as well as latitude and longitude dose rate distributions are discussed in detail. Analysis confirms that the well-known westward drift effect of the SAA is clearly visible from radiation dose measurements on the ISS.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Monitoramento de Radiação/métodos , Astronave , Doses de Radiação , Federação Russa
7.
Radiat Prot Dosimetry ; 198(9-11): 611-616, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005980

RESUMO

A new Open-Source dosemeter, SPACEDOS, has been developed for measurements of cosmic radiation on board spacecraft and small satellites. Its main advantages are that it is small and lightweight with low power consumption. It can be adjusted for specific applications, e.g. used in pressurized cabins of spacecraft or in vacuum environments in CubeSats or larger satellites. The open-source design enables better portability and reproduction of the results than other similar detectors. The detector has already successfully performed measurements on board the International Space Station. The obtained results are discussed and compared with those measured with thermoluminescent detectors located in the same position as SPACEDOS.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Doses de Radiação , Monitoramento de Radiação/métodos , Astronave , Dosimetria Termoluminescente
8.
Radiat Prot Dosimetry ; 186(2-3): 219-223, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31702766

RESUMO

Track-etched detectors are commonly used also for radiation monitoring onboard International Space Station. To be registered in track-etched detectors, the particle needs to meet several criteria-it must have linear energy transfer above the detection threshold and strike the detector's surface under an angle higher than the so-called critical angle. Linear energy transfer is then estimated from calibration curve from the etch rate ratio V that is calculated from parameters of individual tracks appearing on the detector's surface after chemical etching. It has been observed that V can depend on the incident angle and this dependence can vary for different detector materials, etching and evaluating conditions. To investigate angular dependence, detectors (Harzlas TD-1) were irradiated at HIMAC by several ions under angles from 0° to 90°. The correction accounting not only for critical angle but also for dependence of V on the incident angle is introduced and applied to spectra measured onboard International Space Station.


Assuntos
Íons Pesados , Monitoramento de Radiação/instrumentação , Astronave , Dosimetria Termoluminescente/instrumentação , Calibragem , Radiação Cósmica , Íons , Transferência Linear de Energia , Doses de Radiação , Monitoramento de Radiação/métodos , Voo Espacial/instrumentação , Dosimetria Termoluminescente/métodos
9.
Life Sci Space Res (Amst) ; 8: 38-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26948012

RESUMO

Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.


Assuntos
Radiação Cósmica , Laboratórios , Radiobiologia , Pesquisa , Estados Unidos , United States National Aeronautics and Space Administration
10.
Radiat Environ Biophys ; 53(4): 719-27, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25119442

RESUMO

The health effects of cosmic radiation on astronauts need to be precisely quantified and controlled. This task is important not only in perspective of the increasing human presence at the International Space Station (ISS), but also for the preparation of safe human missions beyond low earth orbit. From a radiation protection point of view, the baseline quantity for radiation risk assessment in space is the effective dose equivalent. The present work reports the first successful attempt of the experimental determination of the effective dose equivalent in space, both for extra-vehicular activity (EVA) and intra-vehicular activity (IVA). This was achieved using the anthropomorphic torso phantom RANDO(®) equipped with more than 6,000 passive thermoluminescent detectors and plastic nuclear track detectors, which have been exposed to cosmic radiation inside the European Space Agency MATROSHKA facility both outside and inside the ISS. In order to calculate the effective dose equivalent, a numerical model of the RANDO(®) phantom, based on computer tomography scans of the actual phantom, was developed. It was found that the effective dose equivalent rate during an EVA approaches 700 µSv/d, while during an IVA about 20 % lower values were observed. It is shown that the individual dose based on a personal dosimeter reading for an astronaut during IVA results in an overestimate of the effective dose equivalent of about 15 %, whereas under an EVA conditions the overestimate is more than 200 %. A personal dosemeter can therefore deliver quite good exposure records during IVA, but may overestimate the effective dose equivalent received during an EVA considerably.


Assuntos
Astronautas , Simulação por Computador , Imagens de Fantasmas , Doses de Radiação , Radiometria/instrumentação , Voo Espacial , Tronco , Humanos , Masculino , Especificidade de Órgãos , Tomografia Computadorizada por Raios X
11.
Radiat Res ; 171(2): 225-35, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19267549

RESUMO

Space radiation hazards are recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a potentially limiting factor since current protection limits for low-Earth orbit missions may be approached or even exceeded. In such a situation, an accurate risk assessment requires knowledge of equivalent doses in critical radiosensitive organs rather than only skin doses or ambient doses from area monitoring. To achieve this, the MATROSHKA experiment uses a human phantom torso equipped with dedicated detector systems. We measured for the first time the doses from the diverse components of ionizing space radiation at the surface and at different locations inside the phantom positioned outside the International Space Station, thereby simulating an extravehicular activity of an astronaut. The relationships between the skin and organ absorbed doses obtained in such an exposure show a steep gradient between the doses in the uppermost layer of the skin and the deep organs with a ratio close to 20. This decrease due to the body self-shielding and a concomitant increase of the radiation quality factor by 1.7 highlight the complexities of an adequate dosimetry of space radiation. The depth-dose distributions established by MATROSHKA serve as benchmarks for space radiation models and radiation transport calculations that are needed for mission planning.


Assuntos
Radiação Cósmica , Modelos Anatômicos , Voo Espacial , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...